Identify flat terrain with above average sun
To identify flat areas in lidar data using GDAL and GRASS in Python, you can use the following steps:
Import the necessary modules
from osgeo import gdal
import grass.script as gs
Set the GRASS GIS environment
gisbase = '/usr/local/grass78'
gs.set_gisbase(gisbase)
location = 'location'
mapset = 'mapset'
gs.run_command('g.proj', georef='path/to/georeferenced_file.tif', location=location)
Import the lidar data into GRASS GIS
gs.run_command('r.in.lidar', input='path/to/lidar_data.las', output='lidar_data', flags='e')
Calculate the slope of the lidar data using the r.slope.aspect module:
gs.run_command('r.slope.aspect', elevation='lidar_data', slope='slope', aspect='aspect')
Identify flat areas by selecting pixels with a slope less than a certain threshold
gs.mapcalc("flat = if(slope < 0.1, 1, null())")
If you want to also consider sunlight exposure, you can use the r.sun module to calculate solar radiation and sky view factor. For example:
gs.run_command('r.sun', elevation='lidar_data', solar_radiation='solar_radiation', sky_view_factor='sky_view_factor')
You can then use map algebra to select pixels that have both low slope and high solar radiation or sky view factor. For example:
gs.mapcalc("flat_sunny = if(slope < 0.1 && solar_radiation > 500, 1, null())")